

5.3i Graphing the Sine and Cosine Function part i

A function is called periodic with period p if f(t+p) = f(t). Since $sin(t+2\pi) = sin(t)$,

the function $f(t) = \sin(t)$ is ______ with period ______

How domain, range, period, even/odd, can be seen on graph.

Note: On all Trigonometric graphs, it is expected that you show scale clearly and label coordinates of high points and low points on graph.

Unit 2: Trigonometric Functions and Introduction to Solving Trig Equations

Both these graphs are ______ with period ______ and have key points occuring every quadrantal angle or every ______

Transformations of the sine and cosine graphs.

These two graphs can be used as basic graphs together with transformations (review 2.6 as needed).

f(x) + cVertical Shift f(x) - c

Ideally, eventually, rather than graph the original and then transform it, you would be able picture the transformation in your head to get a starting point, and then use the "quarter period pattern" to generate the rest.

Unit 2: Trigonometric Functions and Introduction to Solving Trig Equations

	f(x+c)
Horizontal Shift	
	f(x-c)

Graph $f(t) = \sin(t - \pi)$

Again, rather than graph the original and then transform it, picture the transformation in your head to get a starting point, and then use the "quarter period pattern" to generate the rest

When graphing a sine or cosine graph, a choice of scale showing multiples of is usually a good choice, but in some cases, a better choice can be made.

Combining Translations:

And ideally, without having to sketch the intermediate stages.

,

In general, for graphs of the form: $y = a\cos(t)$ $y = a\sin(t)$

5.3ii Graphing the Sine and Cosine Function part (period change)

Graph $y = \sin(2x)$ _____

Initially, we might graph this by using our knowledge of horizontal compression or we night simply plot points (note: plotting points is inefficient and should be our last resource.)

Period?_____

Period _____?

In general, for graphs of the form:	$y = \cos(kx)$	$y = \sin(kx)$	
		,	
k has the effect of changing the		to	

For this type of graph, rather than sketch the original graph and then stretch/compress it, we plan ahead and find the period. Then we break this period into fourths since the key points (lo-zero-hi-zero) occur every one-fourth of the period, and choose our x axis scale accordingly.

Reminder: On all Trigonometric graphs, it is expected that you show scale clearly and label coordinates of high points and low points on graph

.

.

Ex: Graph at least one period of_____

Ex: Graph at least one period of _____

	↓		
	У		
-<	0		<u> </u>
	Ĭ		×
	V		

Combining vertical and horizontal stretch/compress.					
$y = A\cos(kx)$	$y = A\sin(kx)$				

Ex:

This next example will lead us into the third part of graphing sine and cosine where we put it all together.

Use the above graph to graph $g(x) = 4\sin\left(2\left(x - \frac{\pi}{4}\right)\right)$

5.3ii Graphing the Sine and Cosine Function part iii : Putting it All Together

Graph
$$f(x) = 3\cos\left(\pi x + \frac{\pi}{6}\right)$$

How would we graph
$$g(x) = -3\cos\left(\pi x + \frac{\pi}{6}\right) + 1$$
?_

Summarizing
$$f(x) = a\cos(k(x+b)) + c$$
 $f(x) = a\sin(k(x+b)) + c$